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Terminology

• Application Programming Interface (API)
• Model Context Protocol (MCP)

• Anthropic
• Large Language Model (LLM)
• Agent (Agentic)
• Copilot

https://www.anthropic.com/
https://www.anthropic.com/
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API vs MCP

• Very similar in concept
• APIs have “endpoints”, MCP servers 

have “tools”
• Different use cases but similar 

implementations
• Different architectural decisions
• Different documentation
• Can convert from one to the other
• Should like re-use a significant 

amount of code and infrastructure 
between an MCP server and a well 
written API
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MCP 
Concepts

• MCP is a protocol that exposes custom code to 
LLMs

• Think of MCP as providing “context” or “tools” to 
your LLMs or Agents (or other AI enabled 
applications)
• AI calls your code when needed
• AI determines inputs and evaluates output

• A single AI prompt might be evaluated by the 
AI LLM and the decision made to call many 
MCP tools (from the same or different 
endpoints).   This chaining is very powerful and 
affects your design.

• In a local C#/dotnetcore application you can 
register tools in memory via SemanticKernel
SDK…remote tools are registered and called via 
MCP.
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MCP Server Architecture
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Describing 
MCP Tools 
(in C#)

• Static Classes (per the current SDK)
• C# Attributes

• Class Level 
• Method Level
• Parameter Level
• Model Level (inputs/outputs)

• Easy to scan and expose MCP with very 
little up-front configuration

• Tooling:
• Postman

https://www.postman.com/
https://www.postman.com/
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Building an 
MCP Server

• SDKs in multiple languages
• Tools are descriptive endpoints made available to LLMs
• Very easy to write and describe in most languages
• Deployment can be:

• Local (executable or command line)
• Remote (streaming HTTP)

Building an MCP server in C#

builder.Services.AddMcpServer()

.WithHttpTransport()

.WithToolsFromAssembly();

…

app.UseEndpoints(endpoints =>

{

endpoints.MapControllers();

endpoints.MapMcp("/mcp");

endpoints.MapRazorComponents<App>()

.AddInteractiveServerRenderMode();

});

https://devblogs.microsoft.com/dotnet/build-a-model-context-protocol-mcp-server-in-csharp/
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Modern 
Applications

• User Interface
• Angular, React, Blazor, Mobile, Other?

• API
• Json/Rest

• MCP
• Tools

Lots of options but will commonly be a 
single versionable deployment.   All 
hosted in the Cloud.

UI will become less complex in certain 
areas due to MCP
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Demos
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Use Cases

• Integrate Existing or new Apps with AI Agents
• Wrap API’s in MCP endpoints

• Examples of apps now exposing MCP Server 
capabilities:

• GitHub
• Azure
• Azure DevOps
• Figma
• Windows (or other operating systems)
• 100s of others (soon to be 1000’s)

VS Code MCP Servers

https://code.visualstudio.com/mcp
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Final 
Thoughts

How do we search or use the web today?

How do we utilize custom applications?

How will we do that tomorrow?

Most applications will support registering 
MCP servers to expand capabilities

Interaction between websites, local 
applications, etc will continue to be driven by 
LLMs and MCP
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Resources

• MCP Servers in VS Code

• Building MCP Servers in C#

• GitHub MCP Server

• C# MCP SDK

• Official MCP Documentation

• Oath in MCP (Blog Post)

• Figma MCP Server

https://code.visualstudio.com/mcp
https://code.visualstudio.com/mcp
https://devblogs.microsoft.com/dotnet/build-a-model-context-protocol-mcp-server-in-csharp/
https://devblogs.microsoft.com/dotnet/build-a-model-context-protocol-mcp-server-in-csharp/
https://github.com/github/github-mcp-server
https://github.com/github/github-mcp-server
https://github.com/modelcontextprotocol/csharp-sdk
https://github.com/modelcontextprotocol/csharp-sdk
https://modelcontextprotocol.io/introduction
https://modelcontextprotocol.io/introduction
https://den.dev/blog/mcp-csharp-sdk-authorization/
https://den.dev/blog/mcp-csharp-sdk-authorization/
https://www.figma.com/blog/introducing-figmas-dev-mode-mcp-server/
https://www.figma.com/blog/introducing-figmas-dev-mode-mcp-server/
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