
Integrating Internal Systems with 
AI Agents
Real-World Applications of MCP and Microsoft Copilot

July 17, 2025



2

Presenter

Kevin Grossnicklaus
kvgros@architectnow.net

www.architectnow.net

mailto:kvgros@architectnow.net
http://www.architectnow.net/


3

Terminology

• Application Programming Interface (API)
• Model Context Protocol (MCP)

• Anthropic
• Large Language Model (LLM)
• Agent (Agentic)
• Copilot

https://www.anthropic.com/
https://www.anthropic.com/


4

API vs MCP

• Very similar in concept
• APIs have “endpoints”, MCP servers 

have “tools”
• Different use cases but similar 

implementations
• Different architectural decisions
• Different documentation
• Can convert from one to the other
• Should like re-use a significant 

amount of code and infrastructure 
between an MCP server and a well 
written API



5

MCP 
Concepts

• MCP is a protocol that exposes custom code to 
LLMs

• Think of MCP as providing “context” or “tools” to 
your LLMs or Agents (or other AI enabled 
applications)
• AI calls your code when needed
• AI determines inputs and evaluates output

• A single AI prompt might be evaluated by the 
AI LLM and the decision made to call many 
MCP tools (from the same or different 
endpoints).   This chaining is very powerful and 
affects your design.

• In a local C#/dotnetcore application you can 
register tools in memory via SemanticKernel
SDK…remote tools are registered and called via 
MCP.



6

MCP Server Architecture



7

Describing 
MCP Tools 
(in C#)

• Static Classes (per the current SDK)
• C# Attributes

• Class Level 
• Method Level
• Parameter Level
• Model Level (inputs/outputs)

• Easy to scan and expose MCP with very 
little up-front configuration

• Tooling:
• Postman

https://www.postman.com/
https://www.postman.com/


8

Building an 
MCP Server

• SDKs in multiple languages
• Tools are descriptive endpoints made available to LLMs
• Very easy to write and describe in most languages
• Deployment can be:

• Local (executable or command line)
• Remote (streaming HTTP)

Building an MCP server in C#

builder.Services.AddMcpServer()

.WithHttpTransport()

.WithToolsFromAssembly();

…

app.UseEndpoints(endpoints =>

{

endpoints.MapControllers();

endpoints.MapMcp("/mcp");

endpoints.MapRazorComponents<App>()

.AddInteractiveServerRenderMode();

});

https://devblogs.microsoft.com/dotnet/build-a-model-context-protocol-mcp-server-in-csharp/


9

Modern 
Applications

• User Interface
• Angular, React, Blazor, Mobile, Other?

• API
• Json/Rest

• MCP
• Tools

Lots of options but will commonly be a 
single versionable deployment.   All 
hosted in the Cloud.

UI will become less complex in certain 
areas due to MCP



10

Demos



11

Use Cases

• Integrate Existing or new Apps with AI Agents
• Wrap API’s in MCP endpoints

• Examples of apps now exposing MCP Server 
capabilities:

• GitHub
• Azure
• Azure DevOps
• Figma
• Windows (or other operating systems)
• 100s of others (soon to be 1000’s)

VS Code MCP Servers

https://code.visualstudio.com/mcp


12

Final 
Thoughts

How do we search or use the web today?

How do we utilize custom applications?

How will we do that tomorrow?

Most applications will support registering 
MCP servers to expand capabilities

Interaction between websites, local 
applications, etc will continue to be driven by 
LLMs and MCP



13

Resources

• MCP Servers in VS Code

• Building MCP Servers in C#

• GitHub MCP Server

• C# MCP SDK

• Official MCP Documentation

• Oath in MCP (Blog Post)

• Figma MCP Server

https://code.visualstudio.com/mcp
https://code.visualstudio.com/mcp
https://devblogs.microsoft.com/dotnet/build-a-model-context-protocol-mcp-server-in-csharp/
https://devblogs.microsoft.com/dotnet/build-a-model-context-protocol-mcp-server-in-csharp/
https://github.com/github/github-mcp-server
https://github.com/github/github-mcp-server
https://github.com/modelcontextprotocol/csharp-sdk
https://github.com/modelcontextprotocol/csharp-sdk
https://modelcontextprotocol.io/introduction
https://modelcontextprotocol.io/introduction
https://den.dev/blog/mcp-csharp-sdk-authorization/
https://den.dev/blog/mcp-csharp-sdk-authorization/
https://www.figma.com/blog/introducing-figmas-dev-mode-mcp-server/
https://www.figma.com/blog/introducing-figmas-dev-mode-mcp-server/


THANK YOU
Kevin Grossnicklaus
kvgros@architectnow.net
www.architectnow.net
GitHub: kvgros2 

mailto:kvgros@architectnow.net
http://www.architectnow.net/

	Slide 1: Integrating Internal Systems with AI Agents 
	Slide 2: Presenter
	Slide 3: Terminology
	Slide 4: API vs MCP
	Slide 5: MCP Concepts
	Slide 6: MCP Server Architecture
	Slide 7: Describing MCP Tools  (in C#)
	Slide 8: Building an MCP Server
	Slide 9: Modern Applications
	Slide 10: Demos
	Slide 11: Use Cases
	Slide 12: Final Thoughts
	Slide 13: Resources
	Slide 14

